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The Potts model on Kagoḿe and honeycomb lattices

Iwan Jensen†, Anthony J Guttmann†, and Ian G Enting‡
† Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria
3052, Australia
‡ CSIRO, Division of Atmospheric Research, Mordialloc, Victoria 3195, Australia

Received 17 June 1997

Abstract. Low-temperature series have been derived for theq-state Potts model on the Kagomé
lattice (q = 3 and 4) and for the 3-state honeycomb lattice. The series are derived by the finite-
lattice method, with many additional terms obtained by noting the structure of the correction
terms. Accurate estimates of the critical points are found, which confirm exact, but not rigorous
results in the case of the honeycomb lattice, and refute previous conjectures in the case of the
Kagoḿe lattice.

1. Introduction

The q-state Potts models [1] is one of the most important models in lattice statistical
mechanics and contains the Ising model (q = 2) and bond percolation (q = 1 limit) as
special cases. An excellent introduction to the Potts model, its properties, known results,
and connections to many other problems can be found in Wu’s classic review article [2].
Among the open problems, one of the most important remains the determination of the exact
critical point on various two-dimensional lattices. The critical point for the Ising model can
be found exactly for any two-dimensional lattice, but the generalization to theq-state Potts
model is only known for the square, honeycomb, and triangular lattices [2, 3]. Even in these
cases a rigorous derivation is often only possible forq > 4 andq = 2. The determination
of the critical point for the Kagoḿe lattice has proved to be a particularly elusive problem
[3–6].

In this paper we report on the derivation and analysis of low-temperature series for
the 3-state honeycomb and 3- and 4-state Kagomé lattice Potts model. From the series we
obtain estimates for the critical points, which for the honeycomb model confirms the validity
of the exact but not rigorous result [7], and for the Kagomé lattice provides accurate results
against which conjectures can be tested, and found not to hold. We comment on properties
that the solution must have in an unsuccessful attempt to find an alternative conjecture. In
addition we obtain estimates for the location of various non-physical singularities.

The remainder of the paper is organized as follows. In section 2 we briefly describe the
finite-lattice method of series expansions, give details regarding the specific implementations
for the Kagoḿe and honeycomb lattices, and show how the finite-lattice method can be
supplemented by an extension procedure allowing us to derive more series terms. Details
regarding the analysis of the series are given in section 3 and the implications for possible
conjectures for the critical point on the Kagomé lattice are discussed in section 4. A brief
summary and discussion is given in section 5.
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2. Series expansions

Theq-states Potts model is defined on a lattice in terms of a ‘spin’ variable,σj on each site
j , with integer values from 0 toq−1. With the use of theδ-function,δ(x, y) = 1 if x = y
and 0 otherwise, the Hamiltonian describing the Potts model in a homogeneous magnetic
field h can be written

H = J
∑
〈ij〉
(1− δ(σi, σj ))+ h

∑
i

(1− δ(σi, 0)) (1)

where the first sum is over interacting pairs and the second over sites. The constants are
chosen so that the ground state (σi = 0∀i) has zero energy. In this work we shall only
consider the case in which the spin–spin interactions are restricted to nearest-neighbour
sites.

The low-temperature expansion is based on perturbations from the fully aligned ground
state and is expressed in terms of the low-temperature variableu = exp(−J/kBT ) and the
field variableµ = exp(−h/kBT ). The expansion of the partition function in powers ofu
may be expressed as

Z =
∞∑
n=0

un9n(µ) (2)

where9n(µ) are polynomials inµ. It is more convenient to express the field dependence
in terms of the variablex = 1− µ and truncate the expansion atx2

Z = Z0(u)+ xZ1(u)+ x2Z2(u)+ · · ·
whereZn(u) is a series inu formed by collecting all terms in the expansion ofZ containing
factors ofxn. Standard definitions yield the magnetization

M(u) = M(0)+ q

q − 1
Z1(u)/Z0(u) (3)

the zero-field susceptibility

χ(u) = 2
Z2(u)

Z0(u)
− Z1(u)

Z0(u)
−
(
Z1(u)

Z0(u)

)2

(4)

and the specific heat

Cv(u) = (βJ )2
(
u

d

du

)2

lnZ0(u). (5)

So in order to obtain the series expansions of the specific heat, spontaneous magnetization
and the susceptibility it suffices to calculate the three quantitiesZ0, Z1 andZ2.

2.1. The finite-lattice method

We refer to the recent review [8] by Enting for background material and references regarding
the existence of series expansions as well as the foundations and many applications of the
finite-lattice method. On the square lattice the infinite-lattice partition functionZ can be
approximated by a product of partition functionsZm,n on finite (m× n) lattices,

Z(u) ≈
∏
m,n

Zm,n(u)
am,n with m+ n 6 r (6)

where r is a cut-off which limits the size of the rectangles considered. For the low-
temperature expansion of the Potts modelZm,n is calculated by summing the Boltzmann
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weights over all spin configurations on the finite lattice. All spins outside them×n rectangle
are fixed at 0. The weightsam,n are known explicitly [9],

am,n =



1 for n+m = r
−3 for n+m = r − 1

3 for n+m = r − 2

−1 for n+m = r − 3

0 otherwise.

(7)

Rectangles are obviously the natural finite-lattice building blocks on the square lattice.
However, since the weightsam,n depend only on the topology of the finite lattices, one
can actually use rectangles as the finite-lattice blocks on any two-dimensional lattice. One
merely has to use a more complicated unit cell in building the rectangles. Due to the
symmetry of the lattices one generally hasZm,n = Zn,m so one need only consider the case
m 6 n and change the weightsam,n correspondingly, i.e. multiply by two ifm < n. The
number of terms derived correctly with the finite lattice method is given by the power of
the lowest-order connected graph not contained in any of the rectangles considered, which
in this case are chains of sites all in the same state (6= 0). From the Potts Hamiltonian we
see that on a lattice where each site hasm neighbours, chains of lengths give rise to terms
of orderNr = (m − 2)r + 2 in u. For a given valuer (the semi-perimeter of the largest
rectangle) the series expansion is thus correct to an orderNr determined by the length of
the smallest chain that does not fit into any of the rectangles. So in a calculation ofZm,n(u)

one can safely truncate the polynomials just aboveNr .

2.2. The transfer-matrix technique

The efficient way of calculatingZm,n is by transfer-matrix techniques. From the Potts
Hamiltonian (1) we see that the evaluation ofZm,n only involves contributions from
interactions between nearest-neighbour spins and interactions between the spins and the
magnetic field. The sum over all configurations can therefore be performed by moving a
boundaryline through the lattice. At any given stage the boundary cuts through a number
of, sayk, sites. In theq-state Potts model there are a total ofqk different configurations
along the boundary. We shall refer to each such specific configuration as a ‘signature’.
For each signature we construct a partial sum which is the Boltzmann weight associated
with all possible states on the part of the lattice already traversed by the boundary. Each
partial sum is a (truncated) polynomial inu. The most efficient way to move the boundary
is by adding one ‘cell’ at a time. Shifting the boundary corresponds to generating a new
vector of qk partial sums from a previous vector. Formally this is a matrix operation.
In practice, it is possible to avoid explicit use of the transfer matrix due to the move
being local. Nevertheless, we will continue to use the term ‘transfer-matrix technique’ for
this type of transformation of vectors of partial sums. EvaluatingZm,n involvesm × n
iterations ofqm series operations. In terms of the cut-offr used in equation (6), the main
growth in both memory and time requirements comes from a factorqr/2. Since the Potts
Hamiltonian only singles out the ‘0’ state, the remainingq−1 states are equivalent, i.e. any
permutation among the non-zero states in a signature will leave the associated polynomial
unchanged. For example, one may interchange the states ‘1’ and ‘2’ without changing the
Boltzmann weight of the configurations. This effectively means that the number of different
signatures one needs to store can be reduced by a factor of(q − 1)!, since one need only
keep one specific representative signature for each equivalence class. However, due to the
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Figure 1. A snapshot of the boundary (heavy full line) during the transfer-matrix calculation on
the Kagoḿe lattice. Full circles indicate the spins in the ground state bounding the rectangle,
shaded circles indicate ‘shadow’ sites, while open circles are the sites cut by the boundary line
at some point during the calculation.

implementation of the algorithms utilizing this reduction is only useful forq > 4, since
the use of equivalence classes of signatures doubles the memory requirements. In short the
total memory requirement for theq-state Potts model grows like 2qr/2/(q − 1)!.

The calculation of the series expansion involve only additions and multiplications, so
in order to deal with the large integer coefficients occurring in the series expansions the
calculations should be performed using modular arithmetic [10]. This involves performing
the calculation modulo of various prime numberspi and then reconstructing the full integer
coefficients at the end. The Chinese remainder theorem ensures that any integer has a
unique representation in terms of residues. If the largest absolute values occurring in the
final expansion isM then we have to use a number of primesn so thatp1p2 . . . pn/2> M.
Note that it is not necessary to be able to uniquely reproduce the intermediate values, which
can be much larger than the final ones.

2.2.1. Kagom´e lattice specifics. Figure 1 shows a snapshot of the boundary (the heavy
full line) during the traversing of the lattice. The Boltzmann weights of spin–spin and
field–spin interactions on sites to the left of the boundary line have already been included
in the partial sums. The part of the lattice to the right of the boundary is to be included
subsequently. In order to add a new ‘cell’ to the completed part of the lattice, the boundary
is moved to a new position as indicated by the heavy dotted line. The partial sums have to
be updated in order to pick up the Boltzmann weights from the six spin–spin interactions
between the five sites lying between the old and new positions of the boundary line. In
addition the Boltzmann weights from the field interacting with the ‘shadow’ spin at the
centre (shaded) site and the two sites cutting the dotted line has to be included. We use
the term ‘shadow’ spin to denote spins placed on sites of the underlying lattice which are
never cut by the boundary line (or belong to the border) and therefore do not have to be
stored in a signature. Note that in this updating the weights do not depend on the states
of any sites on the boundary line other than the two sites involved in the move. LetSσb,σt

denote a boundary which has the spins on the bottom and top sites of the moving section
of the boundary in stateσb andσt, respectively. The partial sum after the move to the new
positionW(Sσ ′b,σ ′t , u, x), is obtained by summing over theq2 partial sumsW(Sσb,σt , u, x),
multiplied by the appropriate Boltzmann weights

W(Sσ ′b,σ
′
t
, u, x) = Bh(σ ′b)Bh(σ ′t )

∑
σb,σt

BW(σb, σt, σ
′
b, σ

′
t )W(Sσb,σt , u, x) (8)
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where the weightBW is obtained by summing over theq-statesσc of the centre spin at the
site indicated by a shaded circle between the two positions of the boundary line

BW(σb, σt, σ
′
b, σ

′
t ) =

∑
σc

Bh(σc)BT (σb, σ
′
b)BT (σt, σ

′
t )BT (σb, σc)

×BT (σ ′b, σc)BT (σt, σc)BT (σ
′
t , σc) (9)

and the ‘elementary’ Boltzmann weights are

BT (σi, σj ) = u1−δ(σi ,σj ) Bh(σi) = (1− x)1−δ(σi ,0). (10)

The updating at the bottom and top boundaries is of course slightly different since only
a single site has to be moved. The weights involved are easily deduced from the general
case above. The initial weight assigned to a given signatureS, when the boundary line
is all the way to the left in figure 1, is simply((1− x)u2)kS , wherekS is the number of
non-zero states inS. The valueZm,n is calculated after the boundary has been movedn

columns to the right and is positioned at the right border in figure 1. At this point only the
interactions (indicated by the dotted lines) between the ‘internal’ spins along the boundary
and the spins just outside the rectangle (which are all in the ground state) have to be added,
henceZm,n(u, x) =

∑
S u

2kSW(S, u, x). Since we need not change the weightW(S, u, x)

of the signatureS we can proceed and add the next column of sites in order to calculate
Zm,n+1. In this way one builds up the finite lattices of widthm one column at a time with
each column built up one cell at a time. The cut-offrmax in the length of the perimeter
of the finite lattices is obviously determined by the largest width,wmax that the available
memory allows us to represent,rmax= 2wmax+ 1.

2.2.2. Honeycomb lattice specifics.Figure 2 shows a snapshot of the boundary (the heavy
full line) during the calculation. In this case only a single site at a positionk on the boundary
line is moved (as indicated by the heavy dotted line) in order to add a new ‘cell’ to the
completed part of the lattice. Note that in this updating the weights also depend on the state
of the site immediately below the site involved in the actual move. The partial sum after
the move to the new position,W(Sσ ′k , u, x), is obtained much as before by summing over
the partial sumsW(Sσk , u, x)

W(Sσ ′k , u, x) = Bh(σ ′k)
∑
σk

BW(σk, σ
′
k)W(Sσk , u, x) (11)

Figure 2. A snapshot of the boundary (heavy full line) during the transfer-matrix calculation on
the honeycomb lattice. Full circles indicate the spins in the ground state bounding the rectangle,
shaded circles indicate ‘shadow’ sites, while open circles are the sites cut by the boundary line
at some point during the calculation.
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whereBW is

BW(σk, σ
′
k) =

∑
σc

Bh(σc)BT (σ
′
k, σc)BT (σk, σc)BT (σk−1, σc). (12)

Again the updating on the top and bottom borders are a little different. This time the
initial weight of a signature is 0 apart from the all-zero signature which has weight 1. This
corresponds to the boundary line initially being positioned to the left on the spins fixed
in the ground state. The finite-lattice partition functionZm,n is simply the weight of the
all-zero signature aftern+ 1 moves to the right.

2.3. Extension procedure

In a recent paper [11] it was shown how the finite-lattice method, applied to low-temperature
series for the spin-1 Ising model on the square lattice, can be supplemented by an extension
procedure allowing one to derive more series terms correctly. As already noted the finite-
lattice calculations result in a series correct to an orderNr growing linearly withr. The
first incorrect term is due to the smallest connected graphs, e.g. a linear chain of sites, not
contained in any of the rectangles with a perimeter smaller thanr. However, there are
typically only a few such graphs and the vast majority of graphs contributing to orders just
aboveNr have been counted. The series forZn(u) can be extended by looking at ‘correction
terms’ to the finite lattice contributions. For eachr 6 rmax and n 6 2 we calculate the
truncated polynomialsZn,r =

∑
j zn,r,j u

j correct to orderNr + 15. Then we look at the
integer sequencesdn,s(r) obtained by taking the difference between successive polynomials

Zn,r+1(u)− Zn,r (u) = uNr+1
∑
s>0

(zn,r+1,Nr+s+1− zn,r,Nr+s+1)u
s = uNr+1

∑
s>0

dn,s(r)u
s.

(13)

The first of these correction termsdn,0(r) is often a simple sequence which one can readily
identify. Once this correction term is identified as a function ofr one can use it to obtain
an extra term in the series expansion ofZn(u) from the term of orderNrmax + 1 in Zn,rmax.
Similarly one can obtain further series terms if one can find formulae for the higher-order
correction termsdn,s(r).

2.3.1. Kagom´e lattice. For q = 3 we find that the sequenced0,0(r) starts as

16, 8, 72, 144, 288, 576, 1152, 2304, 4608, 9216, 18 432, . . .

from which it is immediately clear thatd0,0(r) = 9× 2r for r > 3. Similarly we find that
the next sequenced0,1(r) start as

12, 48, 132, 336, 816, 1920, 4416, 9984, 22 272, 49 152, 107 520, . . .

and we see find thatd0,1(r) = (9r + 6)2r−1 for r > 3. And indeed we find thatdn,s(r)/2r

is expressible as a polynomial inr with the general formula given by

dn,s(r)/2
r =

s+n∑
k=0

as,kr
k + mod(r, 2)

br/2c−1+n∑
k=0

bs,kr
k for r > max(3, s + 2). (14)

These general expressions for the correction terms are also valid for theq = 4 case. For
q = 3 we used the integer sequences fordn,s(r), known from the finite-lattice calculation
up to rmax− 1 = 26 to find formulae for all correction terms up tos = 9 for Z0 andZ1,
and up tos = 8 for Z2. For q = 4, where the sequences are known up tormax− 1 = 22,
we found the formulae for the correction terms up tos = 8, 7, and 6 forZ0, Z1, andZ2,
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respectively. This in turn allowed us to calculate the series for the specific heat, spontaneous
magnetization, and zero-field susceptibility, correct to order 67, 67, and 66 forq = 3, and
58, 57, and 56 forq = 4. The resulting series are listed in tables 1 and 2.

2.3.2. Honeycomb lattice.The extension procedure for the 3-state Potts model on the
honeycomb lattice is essentially the same as for the Kagomé lattice. The major difference
is that rather than looking at the difference between successive expansions ofZn for each
perimeter lengthr, we look at each widthw and thus perimeter lengthsr = 2w+ 1. For a
given width the expansion is correct to order 2w + 2. In this case the correction terms are
simply given by polynomials of order 2s+n. We managed to find the formulae for the first
five correction terms forZ0, andZ1 and the first four forZ2. This enabled us to calculate
the series for the specific heat and magnetization to order 35 while the susceptibility was
calculated to order 34. The resulting series are listed in table 3.

3. Analysis of the series

The series were analysed using differential approximants (see [12] for a comprehensive
review), which allows us to locate the singularities and estimate the associated critical
exponents fairly accurately, even in cases where there are many singularities. Here it
suffices to say that aKth-order differential approximant to a functionf , for which one has
derived a series expansion, is formed by matching the coefficients in the polynomialsQi

andP of orderNi andL, respective, so that the solution to the inhomogeneous differential
equation

K∑
i=0

Qi(x)

(
x

d

dx

)i
f̃ (x) = P(x) (15)

agrees with the first series coefficients off . The equations are readily solved as long as
the total number of unknown coefficients in the polynomials is smaller than the order of the
seriesN . The possible singularities of the series appear as the zerosxi of the polynomial
QK and the associated critical exponentλi is estimated from the indicial equation

λi = K − 1− QK−1(xi)

xiQ
′
K(xi)

.

Since the critical exponents of the Potts model are known exactly, one may use these to
obtain improved estimates for the critical pointuc. A simple method consists of generating a
large number of estimates foruc and the associated critical exponent from a variety of high-
order differential approximants and then performing a (linear) fit on the data set(uc, λ−λc),
whereλ is the known exponent andλc the estimate from a given approximant. In this way
the ‘true’ critical point is given by the intersection with the ordinate axis.

In order to locate the non-physical singularities of the series in a systematic fashion
we used the following procedure: we calculated all first- and second-order inhomogeneous
differential approximants with|Ni − Nj | 6 1 andL 6 10, which use more thanN − 10
terms for the Kagoḿe series andN − 6 terms for the honeycomb series, respectively. Each
approximant yieldsNK possible singularities and associated exponents from theNK zeros
of Q1 or Q2, respectively (many of these are of course not actual singularities of the series
but merely spurious zeros.) Next these zeros are sorted into equivalence classes by the
criterion that they lie at most a distance 2−k apart. An equivalence class is accepted as
a singularity if it contains more than 75% of all approximants, and an estimate for the
singularity and exponent is obtained by averaging over the approximants (the spread among
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Table 1. Low-temperature series for the 3-state Kagomé lattice Potts model magnetization
(M(u) =∑n mnu

n), susceptibility (χ(u) =∑n xnu
n), and specific heat (Cv(u) =

∑
n cnu

n).

n mn xn cn

0 1 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 −3 6 96
5 0 0 0
6 −18 84 576
7 −12 48 588
8 −87 738 2304
9 −120 816 5832

10 −432 5520 10800
11 −840 8904 36300
12 −2883 49662 84960
13 −5208 79200 198744
14 −21378 449028 750288
15 −39876 812352 1500300
16 −144507 3772350 5268480
17 −309456 7762032 12588840
18 −978888 31487916 35120088
19 −2349828 72083112 98916888
20 −6995931 266083134 260218080
21 −17727576 654302352 750052800
22 −52099902 2277479412 2076871104
23 −133195908 5812957368 5659178520
24 −389599548 19418064216 16308196992
25 −1010029956 51144852552 43665390000
26 −2921670744 165263023776 125610109872
27 −7740553548 447259989384 344058507576
28 −22113581814 1406988933456 973947846816
29 −59567197308 3884885652408 2717471043624
30 −168833343960 11978733643956 7640481476880
31 −459072147672 33528134442816 21375599418720
32 −1297493365242 101944430318280 60315824916480
33 −3550587103272 288136319393496 168526829468052
34 −10020565843764 866916682806576 477304061147760
35 −27578939587200 2468399305985472 1336067341489440
36 −77700379317777 7364816760006162 3783098028982752
37 −214929171165696 21086188343928000 10627245862050204
38 −604752691194156 62508036269127720 30055832138045448
39 −1679515789816584 179683432691259264 84661883836108488
40 −4723546882412469 530069803229979774 239473055786181120
41 −13158053809070472 1528013328153162432 675545581702034388
42 −37007705334935184 4490951557780006500 1912468636319315760
43 −103340887711777872 12971616570246628752 5400539890817982372
44 −290710029319950927 38013955581535924626 15298868946943164000
45 −813474856495634532 109953447580362728424 43250175040705306560
46 −2289096438867426030 321487932175448055060 122570584529158036272
47 −6416856975936308364 930787060871870632176 346895918095745946468
48 −18064395265699321722 2716589975688019383024 983504007524475320832
49 −50714600486264652300 7870165927584949472712 2786041503639404604300
50 −142840830525954114798 22937036651058234405420 7902700600688052774000
51 −401528506770385674492 66476099307397549169832 22403131227201568287744
52 −1131546663006655147842 193517645617988549126424 63578933046869982683136
53 −3184349082722058118512 560973640191718094985096 180357253144546436992860
54 −8978821267610206814262 1631517795304316841572184 512082087271230348883152
55 −25292749792950575447460 4729916188632642251924184 1453537906309556752690500
56 −71357214706217929579962 13745762116924951541810700 4128758887588349936468736
57 −201185127578571697041084 39850259898428262049660248 11725947499413591306765540
58 −567909244934815644951876 115736001230869629237320376 33321212939726943208100208
59 −1602428748373594200783516 335508831559907827237662504 94681719940903314538199808
60 −4525830721514909452520484 973882929999796303949590356 269161157458651526754760800
61 −12779313452998562575751088 2822906560351192456726628808 765164597112272168946822924
62 −36112413022832169757863636 8190280964421501668180624496 2176035574445824180705701792
63 −102034772613523534358123196 23737238883740117719318876968 6188566722260061225695817348
64 −288481688315871423868448841 68842855853150818403936515902 17605842527415984403325952000
65 −815585466811800742541072412 199491232724918682054607418184 50089773929036377308207913920
66 −2307022361797658699349383748 578362795330018152263654517708 142548622063270027563999134952
67 −6525935640280431571546633332 405705851976987914121136482468
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Table 2. Low-temperature series for the 4-state Kagomé lattice Potts model magnetization
(M(u) =∑n mnu

n), susceptibility (χ(u) =∑n xnu
n), and specific heat (Cv(u) =

∑
n cnu

n).

n mn xn cn

0 1 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 −4 9 144
5 0 0 0
6 −24 126 864
7 −32 144 1764
8 −120 1179 3168
9 −336 2556 18468

10 −768 10332 25200
11 −2496 29952 117612
12 −6612 109053 301104
13 −17296 293580 736164
14 −61176 1221390 3083472
15 −150016 3269736 7009200
16 −518308 12652155 26587584
17 −1418576 36719028 75949200
18 −4266064 126768168 220443768
19 −12800864 392732064 728295840
20 −36773692 1284178329 1994796720
21 −112996720 4104726084 6533132760
22 −334128168 13312704402 19485485712
23 −1009728992 42563828232 59845160592
24 −3068945888 138178786131 189326190240
25 −9160795472 439049042172 566841960000
26 −27959064832 1420005679128 1785253830984
27 −83967142416 4516071938172 5433825702492
28 −255193684244 14525756839035 16774055209296
29 −775172669984 46381825905912 52134557758884
30 −2353166401072 148568699237004 160066296276120
31 −7183969493024 474997804689384 499465339589736
32 −21865038292880 1518337263464217 1542088839821184
33 −66761010187600 4848910682677956 4785625241692812
34 −203920895329384 15488026787092734 14861921154785280
35 −622939137585200 49405076991181620 46013136930629820
36 −1907597954601412 157717547673256251 143179724710028592
37 −5839100589367264 502842226178206728 444307460788537128
38 −17904553293987416 1603882835785276794 1382007017890018224
39 −54924288884555312 5111833437525631932 4299991262500266216
40 −168587657364598336 16290829522698292881 13372271008660815840
41 −517972188102818880 51898455026560227384 41650080676866915192
42 −1591935301954375608 165292258036343046786 129636781648513933248
43 −4896801346851222432 526315378561652140848 403873766750144048472
44 −15070594422813138572 1675525631685456256893 1258564116755555332272
45 −46407033247825344416 5332615947528955108848 3922506253289858274540
46 −142993519851275783136 16969346003306890892592 12233121681671015481288
47 −440788726279046174896 53985343036908955412628 38151082626290844322752
48 −1359532990978694337372 171720520001164948278681 119034204865510152257856
49 −4195096334194601911072 546104737921609144855800 371474973016958736250164
50 −12950662558102405142952 1736438666544106710588234 1159513957773482513976000
51 −39998406500348447841296 5520377782897940654049924 3620504293710371156421864
52 −123585546975351754629604 17547225879729232394464257 11306525203944664279453296
53 −382012112342237894569232 55767563916163273395977652 35319218958939592321818012
54 −1181281605788657503558720 177211108467002325823132392 110351918838492476547124032
55 −3654202706896833484275232 563037480152444772431278776 344852285944713292340450460
56 −11308157611732259902019808 1788651804062931187123534599 1077909408560291918326803360
57 −35005816685168912890325088 3369797869650846858922769964
58 10536877985738655748962377952
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Table 3. Low-temperature series for the 3-state honeycomb lattice Potts model magnetization
(M(u) =∑n mnu

n), susceptibility (χ(u) =∑n xnu
n), and specific heat (Cv(u) =

∑
n cnu

n).

n mn xn cn

0 1 0 0
1 0 0 0
2 0 0 0
3 −3 4 36
4 −9 24 96
5 −36 132 450
6 −123 672 1368
7 −450 3192 5292
8 −1764 15996 20352
9 −6690 74396 79650

10 −26649 354936 324000
11 −104112 1639764 1285020
12 −421248 7669876 5346720
13 −1688337 35282064 21788832
14 −6888978 162809928 91199976
15 −28063296 745459776 378084780
16 −115459524 3413032716 1590491136
17 −475617330 15560103924 6669799788
18 −1970737233 70861321612 28184656536
19 −8184006855 321879751956 119093015550
20 −34118533647 1460223461700 505409136480
21 −142565353488 6612700085376 2147032241928
22 −597406140090 29909912167920 9145594625376
23 −2508667475949 135106788553176 39007441263438
24 −10558028568744 609650115022656 166688869662720
25 −44517381753474 2748066368017884 713206171161000
26 −188048310460236 12375977640193200 3055980598701576
27 −795629660236428 55687114737623036 13109375226995928
28 −3371492077402095 250375275986449380 56301379329483456
29 −14306836317209163 1124888495649710904 242042552346534858
30 −60791276536672623 5050512588212291864 1041567142751412840
31 −258626141584492419 22661449251743675976 4486041205757057268
32 −1101554410568672223 101621602207472708064 19337534732644964352
33 −4696874651300269557 455455915765485083232 83420329126988297664
34 −20047233485072891340 2040254076696411350796 360128233701907804440
35 −85647742067290024089 1555734167361870299160

the approximants is also calculated.) The calculation was then repeated fork−1, k−2, . . . ,
until a minimal value of 5. To avoid outputting well converged singularities at every level,
once an equivalence class has been accepted, the approximants which are members of it
are removed, and the subsequent analysis is carried out on the remaining data only. One
advantage of this method is that spurious outliers, a few of which will almost always
be present when so many approximants are generated, are discarded systematically and
automatically.

3.1. Kagom´e lattice results

In figure 3 we have plotted the estimates of the critical exponents versus the estimates for
the critical point for the 3-states Potts model on the Kagomé lattice. The data was obtained



The Potts model on Kagom´e and honeycomb lattices 8077

Figure 3. Plots of the estimates of the critical exponentsβ, γ , 2−α, andα, respectively, versus
the critical pointuc, as obtained from first- and second-order differential approximants to the
series for the magnetization (top left), susceptibility (top right), partition function (bottom left),
and specific heat (bottom right) for the 3-state Potts model on the Kagomé lattice. The full lines
indicate the exact values of the exponents.

from first- and second-order inhomogeneous differential approximants to the series for the
spontaneous magnetization, susceptibility, zero-field partition functionZ0, and specific heat.
In the case of the susceptibility and specific heat we analysed the seriesχ(u)/u4 and
Cv(u)/u

4. The data includes the results from approximants withL 6 10, |Ni − Nj | 6 1
and where at least 55 series terms were used in the case ofM(u) and Z0(u), while
at least 50 terms were used in the case ofχ(u)/u4 and Cv(u)/u4. From the intersect
between the data points and the lines indicating the exact critical exponents we estimate
that uc = 0.347 648(10), where the number(s) in parentheses indicate our estimate for the
error in the last digit(s).

Figure 4 shows the estimates of the critical exponents versus the estimates for the critical
point for the 4-states model. In this case the data includes the results from approximants
using at least 45 of the series terms forM(u) andZ0(u) and 40 terms forχ(u)/u4 and
Cv(u)/u

4. In this case there is a quite large discrepancy between theuc estimates obtained
from the four series. The partition function and specific heat yields estimates around
uc = 0.317 25(15), while no reasonable extrapolation is possible from the susceptibility
series. However, for all these series the exponent estimates are generally quite far from the
exact results. Only the magnetization series yields exponent estimates close to the known
value, and based on this series we estimateuc = 0.316 85(5).
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Figure 4. Same as in figure 3, but for the 4-state model.

3.2. Honeycomb lattice results

For the honeycomb lattice the critical point is determined by the positive real root (closest
to the origin) of the equation [7]

w3− 3w −√q = 0 (16)

wherew = (exp[J/kBT ] − 1)/
√
q. The fully anisotropic version of this result is given

in [13]. This result is known to be correct forq > 4 andq = 2, but for q = 3 it relies
on the existence of a single phase transition. Given this entirely likely situation, duality
arguments give the critical point. Settingq = 3 in this equation leads to the critical point,
uc = 0.226 6815. . ., the validity of which is confirmed by our series analysis presented
below. As before we have chosen to plot, in figure 5, exponent estimates versus the estimates
for the critical point. In this case the data includes approximants using at least 25 of the
series terms forM(u) andZ0(u) and 20 terms forχ(u)/u3 andCv(u)/u3. The series for the
magnetization and partition function yield estimates very close to the intersection between
the exact critical exponent and the exactuc. Though the remaining series, in particular the
susceptibility, deviate further from the expected intersection the resulting estimates for the
critical point lie on either side of the exact value. It is thus clear from this series analysis
that the results are fully consistent with the exact value for the critical point.
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Figure 5. Same as in figure 3, but for the 3-state Potts model on the honeycomb lattice. The
full lines indicate the exact values of the exponents (horizontal) anduc (vertical).

3.3. Analysis of non-physical singularities

As well as the physical singularities, the other singularities in the complex plane are also
of interest, as discussed in the case of the square-lattice Potts model by Matveev and
Shrock [14]. However, while the location of such singularities can be reasonably accurately
estimated from the differential approximants to the series, we have found the exponent
estimates to be much more problematic. To illustrate this, we note that in 1994 we [15]
extended the spin-1 square lattice low-temperature series to 79 terms, and found non-
physical singularities in the magnetization series atu− = −0.598 53(4) with exponent
β− = 0.1247(6) and a pair of complex singularities atu± = −0.301 83(5) ± 0.378 70i
with exponentβ± = −0.127(3). In 1996 we [11] were able to further extend the series to
113 terms, and a reanalysis led to the exponent estimatesβ± = −0.1690(2). In particular,
we note that even for the physical singularity, the dlog Padé approximants are seemingly
well converged, and an exponent estimate based only on the central value and two standard
deviations would give a confidence limit that excluded the correct result. In the light
of the above comments, we give estimates of the critical exponents for the non-physical
singularities, but without quoting confidence limits, as we do not believe we can do so in
any meaningful way. Consequently, the exponent estimates should be viewed as ‘indicative’
or a ‘best guess’.

For the 3-state honeycomb lattice Potts model, we find a non-physical singularity on
the negative real axis atu− = −0.363(3) with apparentexponentsα− = 0.5, β− = 0.11,
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andγ− = 1.15, but as we argue below, we don’t believe these estimates. We find a further
complex-conjugate pair of singularities atu± = −0.06(2)±0.47(3)i with a weaklydivergent
magnetization, and specific heat and susceptibility exponents around one. The singularity
on the negative real axis is the duality mapping (see e.g. [2]) of the triangular-lattice anti-
ferromagnetic critical point, via the relation eKH = 1 − q/(1 − e−Kc). The singularity
e−KH = −0.363 then maps to eKT = 0.201(2), which agrees with the earlier study of
the Potts triangular-lattice anti-ferromagnet [16] in which the estimate eKT = 0.204(3) was
obtained. However, it is known that the Potts anti-ferromagnetic on the triangular lattice has
a weak first-order transition [17–19] and an ordered ground state. Thus the exponents we
observed are spurious, and follow from an implicit assumption of a second-order transition.
A very interesting approach to the honeycombq-state Potts model has recently been made by
Maillard [20], in an attempt to utilize the symmetries of models for which there is no Yang–
Baxter structure. For values ofq equal to the Tutte–Beraha numbers, infinite-order groups
become of finite order. For such values ofq one still gets groups which grow exponentially,
except for the casesq = 1, 3. Utilizing this observation, Maillard systematically constructs
invariants which are expected to be appropriate for the 3-state model on the honeycomb
lattice. From these invariants, one expects singularities to occur at some or all of the zeros
of u3 − 3u− 1 = 0, which gives as one zerou = −0.347 29. . . , which is some 4% away
from the observed position of the singularity on the negative real axis. As our confidence
limit on the position of the singularity in question is better than 1%, it is unlikely—but not
impossible—that the Maillard prediction is correct for this singularity.

For the 3-state Kagoḿe-lattice Potts model, we find a non-physical singularity on
the negative real axis atu− = −0.4023(5) with exponents indistinguishable from the
exponents at the physical singularity. We also find four conjugate pairs of singularities
at u±1 = 0.38(2)± 0.24(2)i, u±2 = 0.278(10)± 0.38(1)i, u±3 = −0.113(6)± 0.515(10)i,
andu±4 = −0.37(2)± 0.30(5)i. At u±1 there appears to be a divergent magnetization and
susceptibility, but a non-divergent specific heat. Atu±2 andu±4 all three thermodynamic
quantities appear to be divergent, while atu±3 there appears to be a divergent specific heat
and susceptibility, but a non-divergent magnetization.

For the 4-state Kagoḿe-lattice Potts model, we find a non-physical singularity on
the negative real axis atu− = −0.42(1) with exponents we cannot estimate. We
also find two conjugate pairs of singularities atu±1 = 0.275(10) ± 0.305(10)i, and
u±2 = −0.345(10) ± 0.235(1)i. At both u±1 andu±2 all three thermodynamic quantities
appear to be divergent. While we are confident that these non-physical singularities are
accurately estimated from our analysis, we note that there are probably some additional
singularities which we have not been able to find. In particular we expect that the number
of non-physical singularities grows withq, as is the case for the spin-S Ising model [21].

4. Critical point of the q-state Potts model on the Kagoḿe lattice

Unlike the square, triangular and honeycomb lattice, the critical point of theq-state Potts
model on the Kagoḿe lattice is not known. For some values ofq, notably q = 0 and
q = 2 it is known, and some years ago Wu [3] conjectured the result for generalq, while
Tsallis [22] made a different conjecture. The Wu conjecture is known not to hold forq = 3
[16], as it leads to an incorrect phase boundary. Both conjectures agree for the (known)
caseq = 2, corresponding to the Ising model, as well as for theq = 0 case. The recent
very precise calculation of the critical percolation probabilitypc by Ziff and Suding [23]
implies that neither conjecture is correct atq = 1, which is consistent with our observation
at q = 3. The various estimates ofwc from numerical work and the conjectures by Wu and



The Potts model on Kagom´e and honeycomb lattices 8081

Table 4. Numerical estimates for the critical pointwc of the Kagoḿe lattice Potts model, from
this (q = 3 and 4) and other work (q = 1) [23] and exact results (q = 2) [24]. The lower bound
w2b is from King and Wu [6], while the conjectures are from Wu [3] and Tsallis [22].

q wc w2b Wu Tsallis

1 1.102 629(2) 1.071 0999. . . 1.102 7386. . . 1.093 6799. . .

2
√

3+ 2
√

3− 1 1.484 0238. . .
√

3+ 2
√

3− 1
√

3+ 2
√

3− 1
3 1.876 456(40) 1.793 1546. . . 1.876 2692. . . 1.889 5735. . .
4 2.156 1(5) 2.049 4407. . . 2.155 8422. . . 2.184 3871. . .

Tsallis are listed in table 4 together with recent exact lower bounds by King and Wu [6].
We have attempted to find an alternative conjecture within the framework of known

results for other lattices, but without success. However, as our work excludes a large class
of natural conjectures, it is worth reporting. It is also worth mentioning that the critical
percolation probabilitypc is known for site percolation on the Kagomé lattice, being equal
to the corresponding result for bond percolation on the honeycomb lattice, 1− 2 sin(π/18),
which is in turn related to the critical percolation probability 2 sin(π/18) of bond percolation
on the triangular latticepc. Indeed Tsallis uses this connection, and conjectures thatpc is
given by

p3− p2− p + 1− 2 sin(π/18) = 0 (17)

which givespc = 0.522 37. . .. This disagrees with the recent numerical estimate of Ziff
and Suding [23] by about 0.4%.

For the square, triangular and honeycomb lattices, theq-state Potts model critical point
is given by the roots of a low-degree polynomial with (small) integer coefficients. These
polynomials are:

y2− 2y − (q − 1) = 0 (square) (18)

y3− 3y + (2− q) = 0 (triangular) (19)

y3− 3y2− 3(q − 1)y − (q2− 3q + 1) = 0 (honeycomb). (20)

In this form,y = 1+w, and the root corresponding toq = 0 is y = 1 for all three lattices.
For q = 1 (bond percolation) the root is 1/(1− pc), for q = 2 it is exp(2J/kTc), and for
q > 2 it is exp(J/kTc). If the co-ordination number of the lattice isz, then asq gets large,
y behaves asq2/z for the three lattices.

In this form, the Wu conjecture can be written as

y6− 6y4+ 2(2− q)y3+ 3(3− 2q)y2− 6(q − 1)(q − 2)y − (q − 2)(q2− 4q + 2) = 0.

(21)

For q = 0, this gives (correctly)y = 1. For q = 2 it simplifies toy6 − 6y4 − 3y2 = 0,
which gives the correct critical point for the Ising model, and asq gets large,y behaves,
as expected, asq1/2. However, the zero corresponding toq = 1 givespc = 0.524 4297. . .,
which may be compared with the best numerical estimatepc = 0.524 4053, with uncertainty
in the last quoted digit—that is to say, it is wrong, but by less than 0.005%. Forq = 3
the relevant zero isy = 2.876 2692. . ., which may be compared with our best estimate of
2.876 46, with an error of no more than four in the last quoted digit. Again the conjecture
is found to be wrong, but by a tiny amount, notably 0.007%. Forq = 4 the appropriate
zero is 3.155 842. . ., while our estimate is 3.1561± 0.0005, which is indistinguishable
from the conjectured zero. Thus the Wu conjecture is wrong, but is extraordinarily close
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to the correct answers for all known values ofq. The Tsallis conjecture forq = 3 is
y = 2.8895. . . , which is wrong by about 0.4%, as forq = 1.

We have attempted to find either a fourth-degree or a sixth-degree polynomial with
q-dependent coefficients that reproduce all known results. In analogy with the results on
other lattices, we required that the coefficient of the highest power ofy be one, and that
the coefficients be small integers (no more than± 20). The coefficients are to be low-order
polynomials inq. The largeq behaviour noted above essentially restricts the degrees of these
polynomials to quite low values. For any given value ofq a large number of polynomials
can be found, but the requirement that the coefficients be low-order polynomials inq has
the consequence that we were unable to find any polynomial that met our requirements.

From this we conclude that no such polynomial exists (or that our search was not clever
enough). This may even mean that the general result is not algebraic—though it clearly is
for q = 0 and 2. This result is reminiscent of the absence of a believable conjecture for the
site percolation threshold for the square and honeycomb lattices.

5. Summary and discussion

We have provided a radical extension of the low-temperature series for theq-state Potts
model on the honeycomb (q = 3) and Kagoḿe (q = 3 and 4) lattices. An efficient
implementation of the finite-lattice method, coupled with the prediction of additional terms
has given rise to very long series. Our calculations were carried out on a single processor
of a DEC ALPHA-SERVER 8400 with 1 Gb of memory per processor. Typical runs for
the maximal width took 30 h per prime forq = 3 and 16 h forq = 4.

Analysis of these new series allowed us to give an estimate of the honeycomb lattice
critical point which is entirely consistent with the presumed exact value. For the Kagomé
lattice our results are inconsistent with any published conjectures, and our attempts to
provide a more believable conjecture have been unsuccessful. We find no evidence for an
algebraic critical point.

The pattern of dependence of estimates ofuc versus the known exponent for the
honeycomb lattice, as shown in figure 5, is qualitatively similar to that found for the 3-state
Kagoḿe lattice, and shown in figure 3. That is to say, the correct exponent underestimates
uc for the magnetization and susceptibility and overestimatesuc for the partition function
and specific heat. Assuming this holds for the Kagomé lattice, it is gratifying to find that a
consistent estimate ofuc emerges, notablyuc = 0.347 650(5), which we take as our final
estimate.

Our extended series are likely to be of value in any further work on these problems.
In particular, Maillard [20] has carried out an extensive investigation of the properties of
the magnetization of the honeycomb lattice 3-state Potts model, and the results presented
here should allow that work to be extended. We have also estimated the non-physical
singularities, the properties of which are so informative, as shown recently by Matveev and
Shrock [14].
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